
System Design of Job
scheduler in Golang

copyright ⒸHarrisonLL

System Design - Intro
Goal setting: design a system work as microservices that periodically crawl job information, retry if failed.
Then do the comparison between user preference and send out information through email.

Design choice:
Golang for job scheduler manager, because it is designed for high concurrent applications, and easy to
communicate with kubernetes services

RabbitMQ for emailing queuing. Since only targeting on spawn and monitor < 10 individual jobs, parallel
processes are fine as there are enough CPU cores. However, when numbers of users increase, say
hundreds to thousands user, queueing system is needed. This project simulate this situation.

Python for crawler. Python has build in easy-to-use crawling and html parser modules like selumni and
beautiful soup.

Docker for containerization. I separated components into different docker containers, which can be
managed by kubernetes or docker-compose.

System Design

Demo

Step 1. docker-compose up middleware

Step 2: start two process. Also runnable through docker

Demo
Steps 3:

Jobs is scheduled every 6 hours, retry happens in hour of the initial job. Once job
is found it will send emails to users.

Sample email:

Demo

Stats and register UI:

Study notes:
Since I am very new to GoLang, I have learned a
lot from doing this project.

1. GoRoutine: go’s simple way of doing
multithreading

2. GoChannel: go’s way to sync threads. We
can also run as infinite for loop to listen to
something from message queue. (refer:
https://www.rabbitmq.com/tutorials/tutorial-o
ne-go)

3. Other than that, I have also experimented
some system programming. For example,
the code on the right shows I have started
many threads to run a python program, for
each thread, I also started additional thread
to wait till the program finishes and release
its resource. (refer:
https://pkg.go.dev/os/exec)

https://www.rabbitmq.com/tutorials/tutorial-one-go
https://www.rabbitmq.com/tutorials/tutorial-one-go
https://pkg.go.dev/os/exec

